# Equivalent Fractions – Ordering of Fractions – Addition of Fractions of the same Denominators (Primary 3)

**MATHEMATICS **

**FIRST TERM** ** **

**WEEK 6**

**PRIMARY 3**

**THEME – FRACTIONS **

**PREVIOUS LESSON – Fractions of Concrete Objects – Shapes or Objects (Primary 3)**

**TOPIC – FRACTIONS **

**LEARNING AREA**

1. Equivalent Fractions

2. Ordering of Fractions

3. Addition of Fractions of the same Denominators

**PERFORMANCE OBJECTIVES **

By the end of the lesson, the pupils should have attained the following objectives (cognitive, affective and psychomotor) and should be able to –

1. write fractions which have the same value as a given fraction.

2. use the symbol < or > to order fractions.

**ENTRY BEHAVIOUR **

Dividing objects

**INSTRUCTIONAL MATERIALS**

The teacher will teach the lesson with the aid of:

Papers of equal sizes, Markers, Coloured pencils or crayon, Inequality chart, etc.

**METHOD OF TEACHING – Choose a suitable and appropriate methods for the lessons.**

*Note – Irrespective of choosing methods of teaching, always introduce an activities that will arouse pupil’s interest or lead them to the lessons. *

**REFERENCE MATERIALS**

1. Scheme of Work

2. 9 – Years Basic Education Curriculum

3. Course Book

4. All Relevant Material

5. Online Information

**CONTENT OF THE LESSON **** **

**LESSON ONE – INTRODUCTORY ACTIVITIES **

EQUIVALENT FRACTIONSTeacher’s/Pupil’s Activities – Gets two oranges and cut one into two equal parts and the other into four equal. Lets the pupils identify the fractional parts –

½and½ – ¼, ¼, ¼and¼Picks one of the half – ½ with 2 of the ¼ (2/4) for the pupils compare and identify the similarity and different.

Except Response is

EQUAL.Teacher’s remark – 1/2 and 2/4 are called equivalent fractions.

More activities from New Method Mathematics Book 3 – Equivalent Fractions – Study Chart.

Guides the pupils to discover equivalent fractions such as –

- 1/2 = 2/4 = 4/8 = 3/6 = 6/12

- 1/4 = 2/8 = 3/1

- and so on.
Teacher’s remark – We can get equivalent fractions by multiplying both numerator and denominator by the same number.

For example,

1/2 = 2/4 = 4/8 3/6 = 6/12

Numerator – 1 x 2 = 2 x 2 = 4 and 1 x 3 = 3 x 2 = 6

Denominators – 2 x 2 = 4 x 2 = 8 and 2 x 3 = 6 x 2 = 12

Quick Assessment/ResponseCopy and Complete each of the following –

1. 2/3 = ◻️/6

2. 5/◻️ = 25/50

**LESSON EVALUATION/ASSIGNMENT **

Copy and Complete each of the following –

1. 1/2 = ◻️/4 = 6/◻️

2. 2/3 = 4/◻️ = ◻️/12

3. 1/4 = ◻️/16 = 16/◻️

4. 3/5 = ◻️/15 = 18/◻️

5. 1/10 = ◻️/30 = 6/◻️

Match the following fractions with its equivalent fractions –

6. 1/2 12/18

7. 5/15 6/9

8. 6/9 4/10

9. 2/5 2/4

10. 2/3 10/30

**LESSON TWO – ORDERING OF FRACTIONS (5 minutes) **

Teacher’s/Pupil’s Activities – Revises the activities on ordering of whole numbers using < and > with the pupils.

Ordering the following number using < or >.

1. 56 and 65

- 56 < 65
2. 265 and 256

- 265 > 255
Teacher’s remark – Just like we order whole numbers using < or >, we are going to do the same with fractions.

**ORDERING OF FRACTIONS WITH THE SAME NUMERATORS OR DENOMINATORS (10 minutes) **

Teacher’s/Pupil’s Activities – Takes the pupils to follow the instructions –

1. When two or more fractions have the same numerator, we compare denominators. The bigger the denominator, the smaller the fraction.

For example – 1/2 and 1/3 – the same numerators

2 < 3

Therefore, 1/2 > 1/3.

2. When 2 fractions have the same denominator, just compare numerators. The bigger the numerator, the bigger the fraction.

For example, 2/5 and 4/5 – the same denominators

2 < 4

Therefore, 2/5 < 4/5

**LESSON EVALUATION/ASSIGNMENT/MARKING/CORRUPTION (25 minutes) **

Order the following fractions using < or >.

1. 7/8 _____ 3/8

2. 5/11 _____ 5/8

3. 2/5 _____ 2/7

4. 3/8 _____ 7/8 _____ 5/8

5. 3/7 _____ 4/7 _____ 5/7

**LESSON THREE – ORDERING OF FRACTIONS WITH DIFFERENT NUMERATORS OR DENOMINATORS (15 minutes) **

Teacher’s/Pupil’s Activities – Takes the pupils to follow the instructions –

1. Find some equivalent fractions for each fraction using multiplication.

Note – You start the multiplication with the numerator or take a lesson number.

2. Pick the equivalent fractions that have the same denominators for all fractions.

3. Compare the numerators.

For example, 2/3 and 3/4

2/3 = 4/6 =

8/123/4 =

9/128 < 9,

That’s, 8/12 < 9/12

Therefore, 2/3 < 3/4.

More examples until the pupils understand the concept.

Note – When the fractions have same numerators and denominators, it means both fractions are equal.

**LESSON EVALUATION/ASSIGNMENT/MARKING/CORRECTION (25 minutes) **

Order the following fractions using < or >.

1. 1/3 _____ 2/5

2. 2/4 _____ 3/6

3. 2/3 _____ 3/5

4. 2/3 _____ 5/6

5. 2/10 _____ 1/5

**LESSON FOUR – ADDITION OF FRACTIONS WITH THE SAME DENOMINATORS **

Teacher’s/Pupil’s Activities – Guides the pupils to apply the instruction to add fractions with the same denominators –

When adding 2 fractions with the same denominators, we add their numerators.

For examples,

1. 2/7 + 3/7

Add the numerator – 2 + 3 = 5

Therefore, 2/7 + 3/7 = 5/7

2. 3/10 + 4/10

3 + 4 = 7

Therefore, 3/10 + 4/10 = 7/10

More exercises until the pupils understand the concept. Allow allowing materials because individual differences.

Oral Questions/Response1. 2/5 + 1/5 = 3/5

2. 2/9 + 5/9 = 7/9

**LESSON EVALUATION/ASSIGNMENT **

Add the following fractions to together.

1. 2/9 and 6/9

2. 1/10 and 3/10

3. 3/5 and 1/5

4. 4/11 and 6/11

5. 11/21 and 4/21

**WORKBOOK – WEEKLY ASSESSMENT **

**PRESENTATION**

To deliver the lesson, the teacher adopts the following steps:

1. To introduce the lesson, the teacher revises the previous lesson. Based on this, he/she asks the pupils some questions;

2. Guides pupils to divide different sets of objects into two to discover that 1⁄2 = 2⁄4 = 3⁄66 = 4⁄8.

Divide different set of objects into two to discover that 1⁄2 = 2⁄4= 3⁄6 = 4⁄8.

3. Guides pupils to divide different sets of objects into 3 to discover that 1⁄3 = 2⁄6 = 4⁄12.

Pupil’s Activities – Divide different set of objects into three to discover that 1⁄3 = 2⁄6 = 4⁄12.

4. Guides pupils to use 2 pieces of paper of the same size and marker to divide first into 2 and second into four equal parts , colour and match the outcome.

Pupil’s Activities – Divide, colour and match the outcome of the marked paper.

5. Guides pupils to divide sets of objects.

Pupil’s Activities – Divide sets of objects.

6. Using the number of objects for the various fractions, leads pupils to identify which fraction is less than (<) or greater than (>) the other, e.g. 1⁄4 < 1⁄2, 1⁄5 < 1⁄4, 1⁄4 > 1⁄5 and 1⁄2 > 1⁄5

Pupil’s Activities – Using the result obtained above, identify which fraction is less than (<) or greater than (>) the other.

7. Guides pupils to add fractions with same denominators.

Pupil’s Activities – Follow the instructions to add fractions together.

**CONCLUSION**

- To conclude the lesson for the week, the teacher revises the entire lesson and links it to the following week’s lesson.

- Next Lesson –

**LESSON EVALUATION **

**Pupils to:**

1. divide a given set of objects into 1⁄2, 1⁄3, 1⁄4, 1⁄5.

2. divide given shapes into fractions: 1⁄2, 1⁄3, 1⁄4, 1⁄5, 1⁄6.

3. divide given set of objects into a given number of parts to form require equivalent fractions;

4. order given set of fractions using the symbol < or >.